CINTECX
CHALLENGE
2024

Optimization and scaling-up Bioingenicria

Procesos Sostenibles

of electrochemical water pos v LmversIade! igog eﬂ_l

W

splitting for H, generation B Grupo Novos Materiais

Introduction

Selection of OER* catalyst™ bt S/ 4 '

Bosre K Application of 371.3 mJ/cmZin 10 repetitions to PP-

HC) [1,2] t“ir ’ ' 3 HC electrode, obtaining PP-HC-laser.
\Water splitting costs

— Potato peels hydrochar (PP-

| | pEprEea (Ndustrial Deep UV-Excimer
\\ Environmental impact laser LEAP-60A

Surface analysis
To measure and quantify surface roughness, several

Scale-up validation ~ W | parameters are commonly utilized, including Rz
— ‘ (Maximum height of the profile), Rq (Root mean square
_ Catalytic working electrode — 1 cm? roughness), Rh (Peak height) and Ra (Arithmetic mean
10 cm? roughness).

— Electrochemical and hydrodynamic studies | PLu Neox, Sensofar, USA

. . i B | Electrocatalytic activity Counterelectrode  [eJEIs A Rle
Scale-up simulations | | Catalytic electrode (Ni

\/eTa dalef=l Cloqigole S fOamM+0.25 mg/cm?

\n Sys u ] | | ,M ) catalyst)
— f Solution NaOH 0.1 M

The reactor geometry was modelled in order to fit its deposited Potential window  [SRONEAY
thermodynamic response during water splitting processes. on Nifoam ‘ - Scan rate 0.01V/s

Results

Evaluation of the laser homogeneity Surface analysis
The unreported preparation of the PP-HC-laser he catalytic electrode has higher roughness (Rz, Rqg, Ra) than Ni
electrode  resulted  suitable, considering  the it foam, which has a smoother surface (Rh).

reproducibility of the physicochemical properties and _aser treatment reduces slightly roughness (Rz, Ra) and peak
the intensity homogeneity of the applied laser (Fig.1). | Q neight (Rh) due to the catalyst melting within Ni foam.

Functional groups analysis Anticipates/explains: ¢ '
- - e NG M
PP-HC Is homogeneously distributed on —High stability of PP-HC-laser %&3‘36{\00\/

B the Ni foam electrode (Fig. 2). Slight oot
’ differences were found between PP-HC  “Better H, or O, liberation
R & ond PP-HC-laser, apart from the higher
gt Oxygen content which demonstrates the
' 8 oxidation capacity of the laser beam.

— |aser oxidation [3]

*OER: Oxygen evolution reaction o4
+*xResults obtained out of project Challenge 2023 o4 Cata|y3t functional groups

Reference electrode FXelZAYel®d

FLUENT

PP—HC_—Iaser |

Moreover, FTIR spectra (Fig.3) verified more clearly
the laser treatment enhanced oxygenated functional
groups presence, reducing the alkenes content.
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| | Moreover, the oxygenation of

—PP-HC the surface (Fig. 4) after laser
| —PP-HC-laser 37| application iIs tangible, reducing
o by C-C and C-H groups (Fig. 5).
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Electrochemical analysis
Increasing the catalytic working electrode area 10 times resulted
0

A 4.9 5.66
. . . . adw 2.57 0o
in a practically constant electrochemical response (Fig. 6). ) - e . I
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Electrochemical impedance spectroscopy Binding energy (eV)
The electrochemical impedance spectroscopy  Chronoamperometry studies

(EIS), showed better results for the bigger |- ; ;
—1 cm? W

electrode (Fig. 7), showing the scale-up of the
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Scale-up simulations Time (h)

140 ST 54/ /I‘“‘\ : [he long-term usage of the electrodes
redicted 1 cm? / - , . : :
120 {  — - ~Experimental 1 cm? P N - caused surface oxidation (Fig. 10). More

Predicted 10 e’ 005 b ds 2025333 stability 1s required at higher electrode

100 - : '
— — —Experimental 10 cm? 7' (Q)) , , , , ,
. . sizes (Fig. 11), thus, as main conclusions, it
. . Experimental and CDF predicted - |
Small discrepancies due to IS needed to:

mass transport limitations, results were compared (Fig. 8), =N | q . .
more noticeable on the bigge ShOWiﬂg the power of CFD model Xplore New € ectrode preparatlon OpthﬂS

electrode : - . . .
to predict the electrocatalytic ——_\\__ Apply modifications to enhance stability ,
15 152 154 156 158 16 162 164 perfOl’maﬂCe- Moreover, the gas 538 536 534 532 530 528 526 "

Corrected potential vs NHE (V) released was simulated (Fig. 9). Binding energy (eV)
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